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Abstract. On the basis of our former work and by means of the decomposition-decimation method, we
study the splitting rules for the second hierarchy of the electronic energy spectra for two-dimensional
Fibonacci-class quasicrystals with one kind of atom and two bond lengths. It is found that every line of the
sub-spectra for n×n and (n+1)× (n+1) clusters of FC(n) (n ≥ 2) splits according to the type Y ′

(n−1)−2−1

and type Yn−2−1 respectively. The one for n × (n + 1) clusters of FC(n) consists of three sub-subbands
when n ≤ 2, and five sub-subbranches when n ≥ 3. The general formulae of the number of energy levels
for the spectra of the second hierarchy are obtained. The analytical results are confirmed by numerical
simulations.

PACS. 71.23.Ft Quasicrystals – 63.90.+t Other topics in lattice dynamics (restricted to new topics
in section 63) – 33.70.Jg Line and band widths, shapes, and shifts

1 Introduction

There have been a large number of studies on the prop-
erties of quasicrystals and quasiperiodic systems since
the leading experiment made by Schechtman et al. [1] in
1984, which demonstrated the existence of quasicrystals
and opened up an interesting field of solid-state physics—
quasicrystal physics. The one-dimensional (1D) Fibonacci
chain [FC(1)] has attracted much attention from both
physicists and mathematicians, because its structure is not
only relatively simple but also possesses the main charac-
teristics of quasicrystals. Huang and co-workers [2] pro-
posed a so-called intergrowth quasiperiodic model [FC(2)]
in 1992. In 1997 based on research concerning FC(1)
and FC(2), Fu et al. [3] designed a class of flawless
quasiperiodic models, which contain FC(1) and FC(2) and
have been called as Fibonacci-class quasilattices [FC(n)].

For 2D FC(1) with one kind of atom and two bond
lengths, Ueda et al. [4] investigated the energy spectrum
and conductance numerically. Ashraff et al. [5] have ana-
lytically studied the energy spectrum, density of states
and the dynamical response function. By means of a
decomposition-decimation (DD), Fu et al. [6] studied the
splitting rules. Yang et al. [7] have found the branching
rules for spectra of 2D FC(1) with three kinds of atoms
and one bond length. For 2D FC(n) with one kind of atom
and two bond lengths Yang et al. [8] recently obtained the
rules for the first hierarchy of the spectra. However, the
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studies of the properties of the second hierarchy, as far as
we know, have not been reported yet.

The DD method was created by Liu and Sritrakool [9]
on the basis of researches of Niu and Nori [10], and it al-
lows one only to calculate the influence between resonant
couplings of the same kind of atoms in the same state in
each hierarchy. So it is possible to compute very large clus-
ters to obtain the electronic energy spectra structure of
higher hierarchies without the difficulty that plagues high-
order perturbation calculation. By means of this method,
in this paper, we have focused our study on the splitting
rules for the spectra of the second hierarchy of 2D FC(n)
with one kind of atom and two bond lengths, and obtain
general formulae for the number of energy levels and some
splitting types. In Section 2, the construction of 2D FC(n)
is introduced. The splitting rules for the second hierarchy
of the spectra are given in Section 3. In Section 4, the influ-
ences of different clusters on the positions of sub-spectra
are studied analytically. Section 5 is a brief summary.

2 Construction of 2D FC(n)

In reference [8] it is proposed that a 2D FC(n) with one
kind of atom and two bond lengths can be composed as
follows: (1) create one FC(n) chain in a horizontal direc-
tion by the substitution rules

S0 = B,B→Bn−1A,A→Bn−1AB, (1)



476 The European Physical Journal B
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Fig. 1. The structure of FC(2) with one kind of atom and
two kinds of bond lengths.

nine-atom cluster

twelve-atom cluster

sixteen-atom cluster

Fig. 2. The structure of FC(3) with one kind of atom and
two kinds of bond lengths.

which shows the following sequence:

B · · · · · ·B︸ ︷︷ ︸
n−1

A · · · · · ·B · · · · · ·B︸ ︷︷ ︸
n−1

AB · · ·

· · ·B · · · · · ·B︸ ︷︷ ︸
n−1

A · · · · · · ; (2)

(2) make “B” units in equation (2) such that there are
“short” bond lengths between atoms for the horizontal lat-
tices, and order “A” units to define “long” bond lengths,
respectively; (3) by the same step as that for horizontal
chains, we can obtain a vertical sequence with the same
order of bond lengths; from which the 2D FC(n) can be
obtained.

Figures 1 and 2 show a 2D FC(2) and a 2D FC(3),
respectively.

3 Splitting rules for the spectra of the second
hierarchy of 2D FC(n)

3.1 Spectra for the second hierarchy of 2D FC(2)

3.1.1 Numerical simulations

In the framework of the single-particle tight-binding trans-
fer model, atomic orbits are all located at the center of the
cell, and the single-site energy εi is a constant for all of
the atoms; then the Hamiltonian can be simply written as

H =
∑

i

|i〉εi〈i| +
∑
i,j

′

|i〉tij〈j|, (3)

where |i〉 is the ith Wannier state,
∑

i,j

′
is the sum over

the nearest-neighbor atoms, and tij is the transfer-matrix
element, which contains two kinds of elements ts (strong)
and tw (weak) corresponding to short and long bonds, re-
spectively. In order to solve the problem simply, we assume
ts = −1.0, tw = −0.1, and εi = 0.0 for all i. The numerical
results for the spectra of FC(2) illustrated in Figure 1 are
shown in Figure 3, where from top to bottom we refer to
the subbands as E1 to E13, respectively.

3.1.2 Analyses of the spectra

Making use of the DD method [9], we presume that

(a) in the zeroth approximation there exists no interaction
among the atoms (i.e., tij = 0), the 2D FC(2)’s are
broken into isolated atoms, and there is only one highly
degenerate energy 0.0 in the systems;

(b) in the first approximation only the interactions be-
tween the nearest-neighbor atoms are calculated and
weak bonds are absent (i.e., tij = tnearest−neighbor =
−1.0 and tij = tothers = 0.0), then the 2D FC(2) con-
tain only three kinds of isolated clusters: nine-atom
clusters, four-atom clusters, and six-atom clusters, and
its spectra consist of thirteen subbands. In Figure 3,
(1) subbands E1, E4, E10, and E13 are for the nine-
atom clusters, (2) E3 and E11 are for the four-atom
clusters, (3) E2, E5, E6, E8, E9, and E12 are for the
six-atom clusters, and (4) E7 consists of degenerate
energy levels of nine-atom clusters and four-atom clus-
ters. Thus there only exist four splitting types for the
second hierarchy sub-spectra;

(c) in the second approximation, the interactions between
the nearest-neighbor atoms and those between the
next-nearest-neighbor atoms are taken into account.
The interactions between atoms with the same energy
are the dominant factors affecting the spectra splitting
of the sub-subbands; the interactions between atoms
with different levels can be regarded as perturbations.
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Fig. 3. The electronic energy spectra of 2D FC(2) vs. atom
numbers with 3025 atoms.
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Fig. 4. Subband E13 of 2D FC(2).

(a) Nine-atom clusters’ spectra (E1, E4, E10, and E13)

For the nine-atom clusters in Figure 1, in the second
approximation, there exist three kinds of isolated sub-
clusters: four nearest-neighbor nine-atom sub-clusters,
six nearest-neighbor nine-atom sub-clusters, and nine
nearest-neighbor nine-atom sub-clusters. The structure of
the nine-atom sublattice is that of a FC(2) and each of
its spectra (E1, E4, E10, and E13) splits into thirteen sub-
subbands as type Y2−2−1 [8]. The picture of the sub-
spectra for level E13 is shown in Figure 4.

(b) Four-atom clusters’ spectra (E3 and E11)

For the four-atom clusters in Figure 1, in the second
approximation, the structure is different from that of
2D FC(1) though there exist three kinds of isolated
sub-clusters: one nearest-neighbor four-atom sub-clusters,
two nearest-neighbor four-atom sub-clusters, and four
nearest-neighbor four-atom sub-clusters. The sub-spectra
(E3 and E11) split into five branches, and we denote this
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Fig. 5. Sub-spectra E11 of 2D FC(2).

kind of structure as type F ′. The branch E11 is shown in
Figure 5.

(c) Six-atom clusters’ spectra (E2, E5, E6, E8, E9,
and E12)

For the six-atom clusters in Figure 1, the case is more
complicated than the aforementioned ones and there exist
six kinds of coupling interactions as shown in Figure 6.
If the mth molecular denotes the six-atom cluster with
atoms 1, 2, 3, 4, 5, and 6, and the nth one the six-atom
cluster with atoms 1

′
, 2

′
, 3

′
, 4

′
, 5

′
, and 6

′
. The mth state

for the two six-atom sub-clusters in Figure 6a is

|Ψm〉 =
6∑

i=1

Ci|ψi〉, (4)

where Ci is the coupling interaction coefficient for every
atom and for atom 1 we have

Eψ1 =
6∑

j=1

Bjt1jψj , (5)

where Bi is the coupling interaction coefficient for atom 1.
Then one can obtain

T1 =
tw
2
, T2 = − tw

2

2ts
, T3 =

t2w
3ts

, T4 =
t3w
3t2s

, T5 = 0, T6 = 0.

(6)
Formula (6) shows that |T2|, |T3| and |T4| � |T1|, and
so T2, T3 and T4 can be ignored, then every line of the sub-
spectra (E2, E5, E6, E8, E9 and E12) will divide into three
sub-branches whereas the splitting type is unknown. The
graph for the sub-spectra of E12 is illustrated in Figure 7.

(d) The middle spectrum (E7) of FC(2)

In the second approximation, because the interactions be-
tween nine-atom clusters are much weaker than those be-
tween four-atom clusters, the splitting rules for the middle
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Fig. 6. Coupling interactions between six-atom clusters for 2D FC(2).
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Fig. 7. Subband E12 of 2D FC(2).

subband E7 are mainly controlled by four-atom clusters,
and E7 splits into five sub-subbands. The figure for the
sub-spectra of E7 is illustrated in Figure 8.

3.2 Spectra of 2D FC(3)

The numerical results for the spectra of FC(3) illustrated
in Figure 2 are shown in Figure 9, where from top to bot-
tom we refer to the twenty-five subbands as E1 to E25,
respectively. By means of the DD method and in the first
approximation there exist three kinds of isolated clus-
ters: sixteen-atom clusters, nine-atom clusters, and twelve-
atom clusters. Here we only present the results for the sub-
spectra (E2, E5, E6, E10, E11, E12, E14, E15, E16, E20,
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Fig. 8. Sub-spectra E7 of 2D FC(2).

E21, and E24) of twelve-atom clusters in detail. In the
second approximation, there exist six kinds of coupling
interactions as shown in Figure 10, and the corresponding
six renormalized transfer-matrix elements are obtained as
follows

T1 =
tw
3
, T2 =

1√
2
T1, T3 =

−tw2

3ts
, T4 =

tw
3

4t2s
,

T5 = 0, T6 = 0. (7)

It shows that |T3|and |T4| � |T1| and |T2|, and so T3

and T4 can be ignored. The sub-spectrum for twelve-atom
clusters divides into five branches. Figure 11 shows the
picture for the sub-spectra of E21.
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Fig. 9. The electronic energy spectra of 2D FC(3) vs. atom numbers with 3025 atoms.

12'

11'

10'

9'

8'

7'

6'

5'

4'

3'

2'

1'

12

11

10

9

8

7

6

5

4

3

2

1

T
1

(a)

12''

11''

10''

9''

8''

7''

6''

5''

4''

3''

2''

1''

12'

11'

10'

9'

8'

7'

6'

5'

4'

3'

2'

2'

1'

12

11

10

9

9

8

7

6

5

5

4

3

2

1

T
2

 

(b)

12'

11'

10'

9'

8'

7'

6'

5'

4'

3'

2'

1'

12

11

10

9

8

7

6

5

4

3

2

2

1

T
3

(c)

12'11'10'

9' 9'

9'

8'7'6'

5' 5'

5'

4'3'

1' 1'

1'

121110

8
76

431
T

4

(d)

12'

11'

10'

8'

7'

6'

4'

3'

2'

1211109

8765

4321

T
5

(f)(e)

12'

11'

10'

8'

7'

6'

4'

3'

2'

121110
9

8765

432
1

T
6 

 

Fig. 10. Coupling interactions between twelve-atom clusters for 2D FC(3).

3.3 Spectra of 2D FC(n)

3.3.1 (n + 1) × (n + 1) clusters’ spectra

In the second approximation the structures of (n + 1) ×
(n+ 1) clusters for FC(n)(n ≥ 2) are that of FC(n). From
reference [8], one knows that every line of the sub-spectra
splits according to the type Yn−2−1 and the number of the

sub-spectra lines with different energy values is given by

l(n+1)×(n+1) = N
′
FC(n), (8)

and the total number of this kind of sub-spectra is

L(n+1)×(n+1) = (n2 − n+ 2) ×N
′
FC(n). (9)
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Fig. 11. Subband E21 of 2D FC(3).

3.3.2 n × n clusters’ spectra

Similarly, it is found that the sub-spectrum for n × n
clusters of FC(n)(n ≥ 2) splits according to the type
Y ′

(n−1)−2−1 and the number of lines with different energy
values is given by

ln×n = N
′
FC(n−1), (10)

and the total number is

Ln×n = 2(n− 1) ×N
′
FC(n−1). (11)

3.3.3 n × (n + 1) clusters’ spectra

In the second approximation, when n ≥ 3 there exist only
two kinds of relatively strong coupling interactions for n×
(n+1) clusters of FC(n), and the sub-spectrum splits into
five branches. In conclusion, the number of the sub-spectra
with different energy values for FC(n) can be given as
follows:

ln×(n+1) =

{
3, n ≤ 2

5, n ≥ 3,
(12)

and the total number is

Ln×(n+1) =

{
3 × (n2 + n), n ≤ 2

5 × (n2 + n), n ≥ 3.
(13)

3.3.4 The middle spectrum of FC(n)

It can be demonstrated that the interactions between n×n
clusters are the most significant effects for the sub-spectra

splitting of the middle line and the number of the sub-
spectra can be obtained as follows:

lMiddle Line = N
′
FC(n−1) (n ≥ 2). (14)

3.3.5 Total spectra number for the second hierarchy
of 2D FC(n)

By means of equations (9), (11), (13) and (14), one can
obtain the following formula for the total number of the
second hierarchy sub-spectra of FC(n) (n ≥ 2):

LFC(n) = L(n+1)×(n+1) + Ln×n + Ln×(n+1)

+lMiddle Line

=
(
n2 − n+ 2

) ×N
′
FC(n)

+(2n− 1) ×N
′
FC(n−1)

+Ln×(n+1) (n ≥ 2). (15)

(a) When n = 2 the total number is

LFC(n) =
(
n2 − n+ 2

) × (
2n2 + 2n+ 1

)
+ 3

(
n2 + n

)
+(2n− 1)

[
2(n− 1)2 + 2(n− 1) + 1

]
= 85. (16)

(b) When n ≥ 3 the number of the levels is

LFC(n) =
(
n2 − n+ 2

) × (
2n2 + 2n+ 1

)
+ 5

(
n2 + n

)
+(2n− 1)

[
2(n− 1)2 + 2(n− 1) + 1

]
= 2n4 + 4n3 + 2n2 + 12n+ 1. (17)

The number of the sub-spectra for the second hierar-
chy of FC(n) and some splitting types are also shown in
Table 1.
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Table 1. The number and some splitting types of the sub-spectra for the second hierarchy of FC(n) (n ≥ 2).

item FC(2) FC(3) FC(n)

n × n cluster 5 (type F ′) 13 (type Y ′
2−2−1) N

′
FC(n−1) (type Y ′

(n−1)−2−1)

(n + 1) × (n + 1) cluster 13 (type Y2−2−1) 25 (type Y3−2−1) N
′
FC(n) (type Yn−2−1)

n × (n + 1) cluster 3 (Unknown) 5 (Unknown) 5 (Unknown)

n × n & (n + 1) × (n + 1) clusters 5 (Unknown) 13 (Unknown) N
′
FC(n−1)(Unknown)

quasilattice 85 (Unknown) 325 (Unknown) LF C(n) (Unknown)

4 Influences on the positions of energy
spectra

In the first-order approximation, the number and the po-
larities of the three kinds of clusters for FC(n) are quite
different. Although the volume of n× n clusters is nearly
equal to that of n×(n+1) clusters, the former is nonpolar
and the later is polar. On the other hand, the number of
(n+ 1)× (n+ 1) clusters is much smaller than that of the
two kinds of aforementioned clusters and is also nonpolar.
So we think that the interactions of n × (n + 1) clusters
are the most dominant effect influencing the sub-spectra.

The center [8] of the subband with the lowest energy
values for nine-atom clusters is located at E13 = −2

√
2 ≈

−2.828, but the realistic range for E13 values as shown
in Figure 4 is from −2.849 to −2.835. It shows that in
practice spectrum shifts downward obviously because of
the repelling actions of the polar six-atoms clusters. For
the symmetry, the line E1 will shift upward. For FC(n)
the same conclusion can be drawn out.

5 Summary

We have investigated the spectra for the second hierarchy
of 2D FC(n) (n ≥ 2) with the DD method. In the
first approximation, there exist three kinds of isolated
clusters: n × n, n × (n + 1), and (n + 1) × (n + 1)
clusters, and the sub-spectra split into four types. The
sub-spectra for n × n and (n + 1) × (n + 1) clusters
split according to the type Y ′

(n−1)−2−1 and Yn−2−1,
respectively. The one for n × (n + 1) clusters splits from
one to three when n ≤ 2, and one to five when n ≥ 3.

The number of the sub-spectrum of the middle line is the
same as that of type Y ′

(n−1)−2−1 but the structure is un-
known. We also obtain the number of the total spectra
for the second hierarchy of 2D FC(n) (n ≥ 2) and analyse
the influences of the number and polarities of clusters on
the positions of the sub-spectra. The analytical results are
confirmed by the numerical simulations.
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